

LOW POWER 512K X 8 CMOS STATIC RAM

FEATURES

■ V_{cc} Current

Operating: 35mACMOS Standby: 100μA

■ Access Times – 45/55/70/100 ns

■ Single 5 Volts ±10% Power Supply

■ Easy Memory Expansion Using CE and OE Inputs

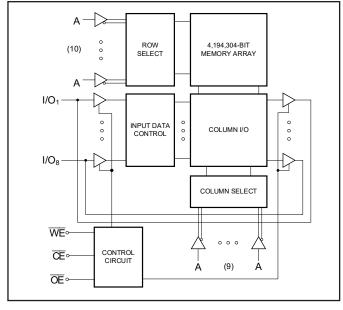
■ Common Data I/O

- **■** Three-State Outputs
- **■** Fully TTL Compatible Inputs and Outputs
- Advanced CMOS Technology
- Automatic Power Down
- Packages
 - 32-Pin 600 mil Plastic and Ceramic DIP
 - 32-Pin 445 mil SOP
 - 32-Pin TSOP II

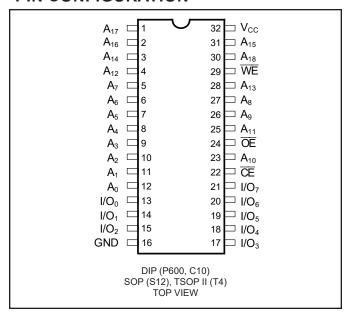
DESCRIPTION

The P4C1048L is a 4 Megabit low power CMOS static RAM organized as 512K x 8. The CMOS memory requires no clocks or refreshing, and has equal access and cycle times. Inputs are fully TTL-compatible. The RAM operates from a single 5V±10% tolerance power supply.

Access times as fast as 45ns are available. CMOS is utilized to reduce power consumption to a low level.


The P4C1048L device provides asynchronous operation with matching access and cycle times. Memory loca-

tions are specified on address pins A_0 to A_{18} . Reading is accomplished by device selection (\overline{CE} low) and output enabling (\overline{OE}) while write enable (\overline{WE}) remains HIGH. By presenting the address under these conditions, the data in the addressed memory location is presented on the data input/output pins. The input/output pins stay in the HIGH Z state when either \overline{CE} is HIGH or \overline{WE} is LOW.


The P4C1048L is packaged in a 32-pin 445 mil plastic SOP, 32-pin TSOP II, or 600 mil plastic or ceramic sidebrazed DIP.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

RECOMMENDED OPERATING TEMPERATURE & SUPPLY VOLTAGE

Grade	Ambient Temperature Range	Supply Voltage
Commercial	0°C to 70°C	4.5V ≤ V _{cc} ≤ 5.5V
Industrial	-40°C to +85°C	4.5V ≤ V _{cc} ≤ 5.5V

MAXIMUM RATINGS

Stresses greater than those listed can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this data sheet. Exposure to Maximum Ratings for extended periods can adversely affect device reliability.

Symbol	Parameter	Min	Max	Unit
V _{cc}	Supply Voltage with Respect to GND	-0.5	7.0	V
V _{TERM}			V _{cc} + 0.5	V
T _A			125	°C
S _{TG}	S _{TG} Storage Temperature		150	°C
I _{OUT} Output Current into Low Outputs			25	mA
I _{LAT}	Latch-up Current	> 200		mA

CAPACITANCES(1)

 $(V_{CC} = 5.0V, T_A = 25^{\circ}C, f = 1.0MHz)$

Symbol	Parameter	Test Conditions	Max	Unit
C _{IN}	Input Capacitance	V _{IN} = 0V	6	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0V	8	pF

POWER DISSIPATION CHARACTERISTICS VS. SPEED

	.			•	11:4		
Symbol	Parameter	Temperature Range	-45	-55	-70	-100	Unit
	Dynamia Operating Current	Commercial	20	20	20	20	mA
cc	Dynamic Operating Current	Industrial	45	45	45	45	mA

^{*} Tested with outputs open and all address and data inputs changing at the maximum write-cycle rate. The device is continuously enabled for writing, i.e. $\overline{\text{CE}}$ and $\overline{\text{WE}} \leq \text{V}_{\text{L}}$ (max), $\overline{\text{OE}}$ is HIGH. Switching inputs are 0V and 3V.

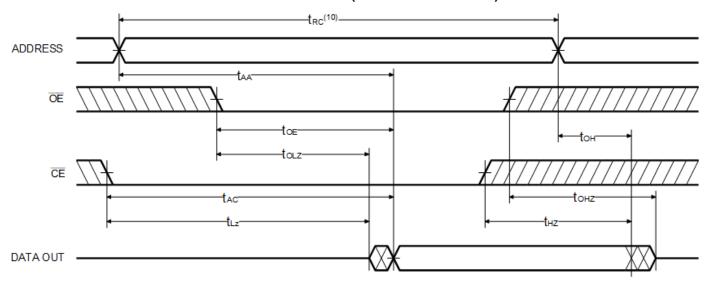
Notes:

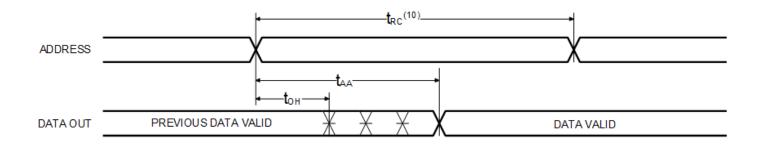
- 1. This parameter is sampled and not 100% tested.
- 2. Extended temperature operation guaranteed with 400 linear feet per minute of air flow.
- 3. Transient inputs with $V_{\rm L}$ and $I_{\rm L}$ not more negative than -3.0V and -100mA, respectively, are permissible for pulse widths up to 20ns.
- Transition is measured ± 200 mV from steady state voltage prior to change, with loading as specified in Figure 1. This parameter is sampled and not 100% tested.
- Read Cycle Time is measured from the last valid address to the first transitioning address.
- 6. WE is HIGH for READ cycle.
- 7. $\overline{\text{CE}}$ is LOW and $\overline{\text{OE}}$ is LOW for READ cycle.
- 8. ADDRESS must be valid prior to, or coincident with $\overline{\text{CE}}$ transition LOW.

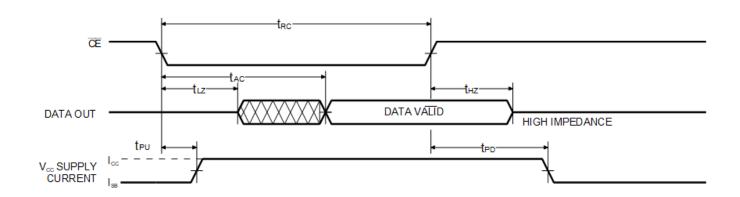
DC ELECTRICAL CHARACTERISTICS

(Over Recommended Operating Temperature & Supply Voltage)(2)

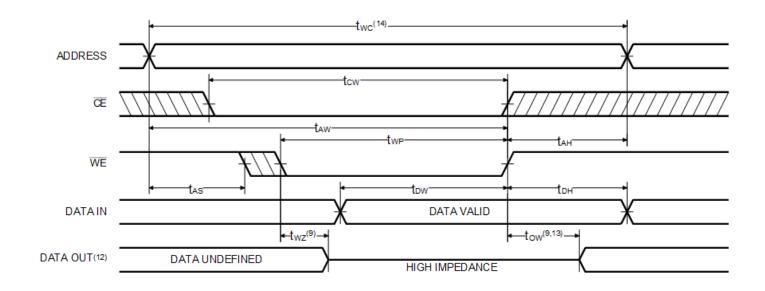
0	Barranton	Tank Oam dikinga	P4C1	Unit	
Symbol	Parameter	Test Conditions	Min	Max	Unit
V _{IH}	Input High Voltage		2.2	V _{cc} + 0.5	V
V _{IL}	Input Low Voltage		-0.5(3)	0.8	V
V _{HC}	CMOS Input High Voltage		V _{cc} - 0.2	V _{cc} + 0.5	V
V _{LC}	CMOS Input Low Voltage		-0.5(3)	0.2	V
V _{OL}	Output Low Voltage (TTL Load)	I _{OL} = +2.1mA, V _{CC} = Min		0.4	V
V _{OH}	Output High Voltage (TTL Load)	I _{OH} = -1mA, V _{CC} = Min	2.4		V
I _{LI}	Input Leakage Current	$V_{CC} = Max$, $V_{IN} = GND \text{ to } V_{CC}$	-5	+5	μA
I _{LO}	Output Leakage Current	$V_{CC} = Max,$ $\overline{CE} = V_{IN},$ $V_{OUT} = GND \text{ to } V_{CC}$	-5	+5	μA
I _{SB}	Standby Power Supply Current (TTL Input Levels)	CE ≥ V _{IH} , VCC = Max, f = Max, Outputs Open	_	3	mA
I _{SB1}	Standby Power Supply Current (CMOS Input Levels)	$\overline{CE} \ge V_{HC},$ $V_{CC} = Max,$ $f = 0, Outputs Open,$ $V_{IN} \le V_{LC} \text{ or } V_{IN} \ge V_{HC}$	_	55	μА


AC ELECTRICAL CHARACTERISTICS - READ CYCLE


(Over Recommended Operating Temperature & Supply Voltage)


0	Barranatan		45	-:	55	-7	70	-1	00	11
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{RC}	Read Cycle Time	45		55		70		100		ns
t _{AA}	Address Access Time		45		55		70		100	ns
t _{AC}	Chip Enable Access Time		45		55		70		100	ns
t _{oh}	Output Hold from Address Change	5		5		5		5		ns
t _{LZ}	Chip Enable to Output in Low Z	10		10		10		10		ns
t _{HZ}	Chip Disable to Output in High Z		18		20		25		35	ns
t _{oe}	Output Enable Low to Data Valid		22		25		35		45	ns
t _{OLZ}	Output Enable Low to Low Z	5		5		5		5		ns
t _{ohz}	Output Enable High to High Z		18		20		25		35	ns
t _{PU}	Chip Enable to Power Up Time	0		0		0		0		ns
t _{PD}	Chip Disable to Power Down Time		45		55		70		100	ns

TIMING WAVEFORM OF READ CYCLE NO. 1 ($\overline{\text{OE}}$ CONTROLLED)(6)



AC CHARACTERISTICS—WRITE CYCLE

(Over Recommended Operating Temperature & Supply Voltage)

Cumbal	Dougranton	-4	15	-5	55	-7	70	-1	00	I I m ! 4
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t_{wc}	Write Cycle Time	45		55		70		100		ns
$t_{\scriptscriptstyle CW}$	Chip Enable Time to End of Write	35		40		60		75		ns
t _{AW}	Address Valid to End of Write	35		40		60		75		ns
t _{AS}	Address Setup Time	0		0		0		0		ns
t _{wP}	Write Pulse Width	35		40		50		60		ns
t _{AH}	Address Hold Time	0		0		0		0		ns
t_{DW}	Data Valid to End of Write	25		30		35		45		ns
t _{DH}	Data Hold Time	0		0		0		0		ns
t _{wz}	Write Enable to Output in High Z		18		20		25		35	ns
t _{ow}	Output Active from End of Write	5		5		5		5		ns



- 9. Transition is measured \pm 200 mV from steady state voltage prior to change, with loading as specified in Figure 1. This parameter is sampled and not 100% tested.
- 10. Read Cycle Time is measured from the last valid address to the first transitioning address.
- 11. $\overline{\text{CE}}$ and $\overline{\text{WE}}$ are LOW for WRITE cycle.

- 12. \overline{OE} is LOW for this WRITE CYCLE to show t_{wz} and t_{ow} .

 13. If \overline{CE} goes HIGH simultaneously with \overline{WE} HIGH, the output remains in a high impedance state.
- 14. Write Cycle Time is measured from the last valid address to the first transitioning address.

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns
Input Timing Reference Level	1.5V
Output Timing Reference Level	1.5V
Output Load	See Figures 1 and 2

TRUTH TABLE

Mode	CE	ŌĒ	WE	I/O	Power
Standby	Н	Х	Х	High Z	Standby
D _{OUT} Disabled	L	Н	Н	High Z	Active
Read	L	L	Н	D _{out}	Active
Write	L	Х	L	D _{IN}	Active

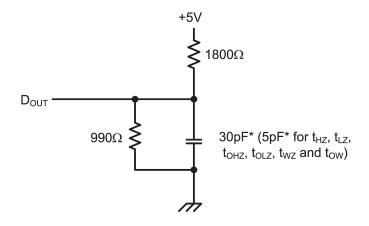


Figure 1. Output Load

Note:

Because of the ultra-high speed of the P4C1048L, care must be taken when testing this device; an inadequate setup can cause a normal functioning part to be rejected as faulty. Long high-inductance leads that cause supply bounce must be avoided by bringing the $\rm V_{cc}$ and ground planes directly up to the contactor fingers. A 0.01 $\rm \mu F$ high frequency capacitor

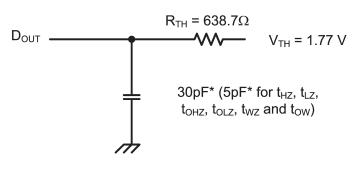
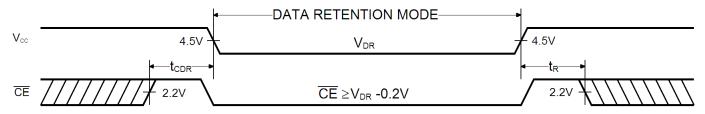
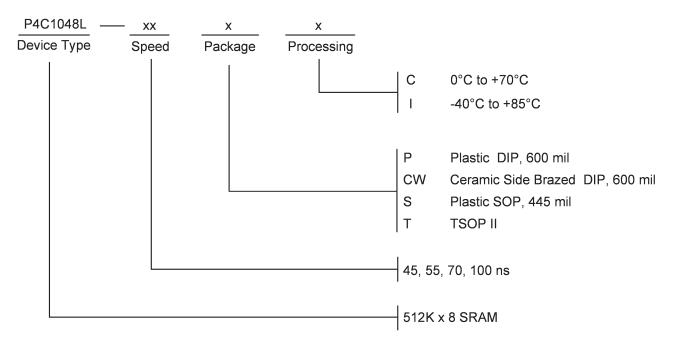


Figure 2. Thevenin Equivalent

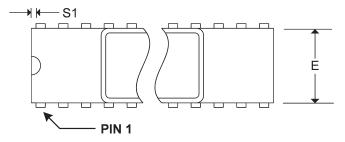
is also required between V_{cc} and ground. To avoid signal reflections, proper termination must be used; for example, a 50Ω test environment should be terminated into a 50Ω load with 1.77V (Thevenin Voltage) at the comparator input, and a 589Ω resistor must be used in series with D_{OUT} to match 639Ω (Thevenin Resistance).

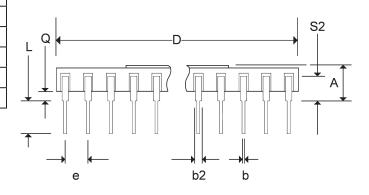

^{*} including scope and test fixture.

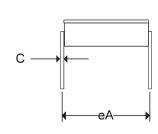
DATA RETENTION


Symbol	Parameter	Test Conditions	Min	Max	Unit
V_{DR}	V _{cc} for Data Retention	$\overline{CE} \ge V_{CC} - 0.2V,$ $V_{IN} \ge V_{CC} - 0.2V \text{ or}$ $V_{IN} \le 0.2V$	2.0	5.5	V
	Data Datastics Command	V _{DR} = 2.0V		30	μA
CCDR	Data Retention Current	V _{DR} = 3.0V		40	μA
t _{CDR}	Chip Deselect to Data Retention Time	See Retention Waveform	0		ns
t _R	Operating Recovery Time		t _{RC}		ns

$\mathbf{LOW} \ \mathbf{V}_{\mathtt{cc}} \ \mathbf{DATA} \ \mathbf{RETENTION} \ \mathbf{WAVEFORM}$

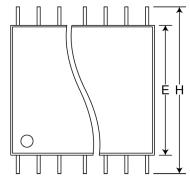

ORDERING INFORMATION

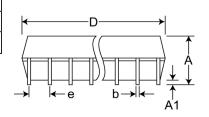


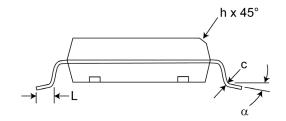


Pkg#	C10				
# Pins	32 (60	00 mil)			
Symbol	Min	Max			
Α	-	0.225			
b	0.014	0.026			
b2	0.045	0.065			
С	0.008	0.018			
D	-	1.680			
Е	0.510	0.620			
eA	0.600	BSC			
е	0.100	BSC			
L	0.125	0.200			
Q	0.015	0.070			
S1	0.005	-			
S2	0.005	-			

SIDEBRAZED DUAL IN-LINE PACKAGE

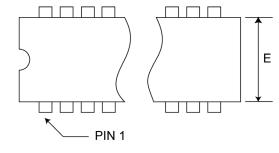


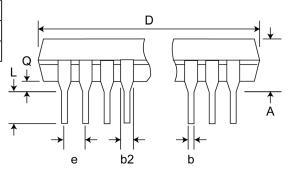


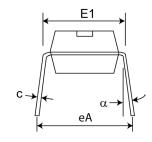


Pkg #	S12				
# Pins	32 (445 Mil)				
Symbol	Min	Max			
Α	-	0.118			
A1	0.004	-			
A2	0.101	0.111			
В	0.014	0.020			
С	0.006	0.012			
D	0.793	0.817			
е	0.050	BSC			
E	0.440	0.450			
Н	0.546	0.566			
L	0.023	0.039			
L1	0.047	0.063			
α	0°	4°			

SOIC/SOP SMALL OUTLINE IC PACKAGES

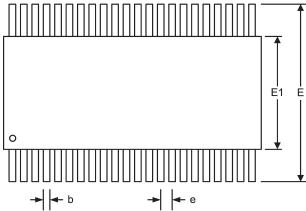


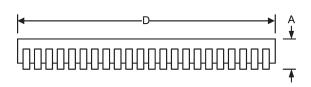




Pkg #	P600		
# Pins	32 (600 mil)		
Symbol	Min	Max	
А	0.160	0.200	
A1	0.015	5 -	
b	0.014	0.023	
b2	0.045	0.070	
С	0.006	0.014	
D	1.600	1.700	
E1	0.526	0.548	
E	0.590	0.610	
е	0.100 BSC		
eB	0.600 BSC		

SOJ SMALL OUTLINE IC PACKAGE





Pkg#	T4	
# Pins	32	
Symbol	Min	Max
Α	0.037	0.041
A_2	-	0.047
b	0.012	0.020
D	0.395	0.405
Е	0.820	0.831
е	0.050 BSC	
H _D	0.455	0.471

REVISIONS

DOCUMENT NUMBER	SRAM 129	
DOCUMENT TITLE P4C1048L - LOW POWER 512K X 8 CMOS STATIC RAM		

REV	ISSUE DATE	ORIGINATOR	DESCRIPTION OF CHANGE
OR	Oct-2005	JDB	New Data Sheet
А	Nov-2006	JDB	Minor corrections to DC Electrical Characterists and Data Retention tables
В	Dec-2006	JDB	Update SOIC/SOP package drawing
С	May-2007	JDB	Added 45/55 ns and PDIP
D	July-2007	JDB	Corrected error in selection guidel; added TSOP II package
5	Mar-2019	JDB	Recreated datasheet from scratch; removed military processing