P4C189 HIGH SPEED 16 x 4 STATIC CMOS RAM WITH INVERTING OUTPUTS

FEATURES

- 16 x 4 Static RAM
- Fast Access Time 35 ns Commercial and Industrial
- Available in the following packages:
 16-Pin PDIP
- Inverted Outputs

- 5V Power Supply ±10% for both commercial and industrial temperature ranges.
- Separate I/O
- Fully static operation with equal access and cycle times
- 3-STATE outputs for data bus applications

The P4C189 is a 64-bit high-speed Static RAM with a 16 x 4 organization. The memory requires no clocks or refreshing and has equal access and cycle times. Inputs and outputs are fully TTL compatible. Operation is from a single 5 Volt supply. The output data is the complement

of the written data.

The P4C189 is offered in a 16-Pin DIP package. Devices are offered in both commercial and industrial temperature ranges.

PIN CONFIGURATION

FUNCTIONAL BLOCK DIAGRAM

Document # SRAM100 Rev OR

MAXIMUM RATINGS⁽¹⁾

Symbol	Parameter	Value	Unit
V _{cc}	Power Supply Pin with Respect to GND	-0.5 to +7	V
V _{TERM}	Terminal Voltage with Respect to GND (up to 7.0V)	-0.5 to V _{cc} +0.5	V
T _A	Operating Temperature	-55 to +125	°C

Symbol Parameter		Value	Unit
T _{BIAS}	Temperature Under Bias	-55 to +125	°C
T _{stg}	Storage Temperature	-65 to +150	°C
I _{OUT}	DC Output Current	20	mA

RECOMMENDED OPERATING CONDITIONS

Grade ⁽²⁾	Ambient Temp	Gnd	Vcc
Commercial	0°C to 70°C	0V	5.0V ±10%
Industrial	–40°C to 85°C	0V	5.0V ±10%

CAP	ACIT	ANCE	S ⁽⁴⁾

 $(V_{cc} = 5.0V, T_{A} = 25^{\circ}C, f = 1.0MHz)$

Symbol	Parameter	Conditions	Тур.	Unit
C _{IN}	Input Capacitance	$V_{IN} = 0V$	5	pF
C _{OUT}	Output Capacitance	V _{OUT} =0V	7	pF

DC ELECTRICAL CHARACTERISTICS

Over recommended operating temperature and supply voltage⁽²⁾

Symbol Parameter		Test Conditions		P4C	:189	1.1
				Min.	Max.	Unit
V _{OH}	Output High Voltage	$V_{\rm CC}$ = Min., $V_{\rm IN}$ = $V_{\rm IH}$ or $V_{\rm IL}$, $I_{\rm OH}$	= –3.0 mA	2.4		V
V _{ol}	Output Low Voltage	$V_{\rm CC}$ = Min., $V_{\rm IN}$ = $V_{\rm IH}$ or $V_{\rm IL}$, $I_{\rm OL}$ =	24 mA		0.5	V
V _{IH}	Input High Level			2.0		V
V _{IL}	Input Low Level				0.8	V
	$V_{IN} = 0.5 V (except \overline{CS})$			-0.6	mΑ	
'IL		$V_{IN} = 0.5 V (\overline{CS})$			-1.2	112.
I _{IH}	Input High Current	V_{cc} = Max, V_{iN} = 2.7V			5	μA
I _{sc}	Output Short Circuit Current	V _{cc} = Max., V _{OUT} = 0.0V		-150	-60	mA
L Dower Supply Current			Commercial		55	
	$v_{cc} - wax.$	Industrial		70	– ma	
Ļ	Output Leakage Current	$V_{out} = V_{cc}, V_{cc} = Max.$	•		50	μA

Notes:

- Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to MAXIMUM rating conditions for extended periods may affect reliability.
- 2. Extended temperature operation guaranteed with 400 linear feet per minute of air flow.
- 3. Transient inputs with V_{μ} and I_{μ} not more negative than -3.0V and -100mA, respectively, are permissible for pulse widths up to 20 ns.
- 4. This parameter is sampled and not 100% tested.
- 5. The is LOW and WE is HIGH for READ cycle.
- WE is HIGH, and address must be valid prior to or coincident with CE transition LOW.
- Transition is measured ±200mV from steady state voltage prior to change with specified loading in Figure 1. This parameter is sampled and not 100% tested.
- 8. Read Cycle Time is measured from the last valid address to the first transitioning address.

FUNCTIONAL DESCRIPTION

An active LOW write enable (\overline{WE}) controls the writing/ reading operation of the memory. When chip select (\overline{CS}) and write enable (\overline{WE}) are LOW, the information on data inputs (D_0 through D_3) is written into the addressed memory word. Reading is performed with chip select (\overline{CS}) LOW and write enable (\overline{WE}) HIGH. The information stored in the addressed word is read out on the inverting outputs $(\overline{O}_0 \text{ through } \overline{O}_3)$. The outputs of the memory go to an inactive high impedance state whenever chip select (\overline{CS}) is HIGH, or during the write operation when write enable (\overline{WE}) is LOW.

TRUTH TABLE

Mode	CS	WE	Output
Standby	Н	Х	High Z
Read	L	Н	D _{OUT}
Write	L	L	High Z

L = Low X = Don't Care HIGH Z = Implies outputs are disabled or off. This condition is defined as high impedance state.

Notes: H = HIGH

AC CHARACTERISTICS—READ CYCLE

 $(V_{cc} = 5V \pm 10\%, All Temperature Ranges)^{(2)}$

Svm	Parameter	-35		Unit
Cynn.	i didineter	Min	Мах	onic
t _{RC}	Read Cycle Time	35		ns
t _{AA}	Address Access Time		35	ns
t _{AC}	Chip Enable Access Time		15	ns
t _{он}	Output Hold from Address Change	2		ns
t _{LZ}	Chip Enable to Output in Low Z	2		ns
t _{HZ}	Chip Disable to Output in High Z		10	ns

TIMING WAVEFORM OF READ CYCLE NO. 1⁽⁵⁾

TIMING WAVEFORM OF READ CYCLE NO. 2⁽⁶⁾

AC CHARACTERISTICS—WRITE CYCLE

 $(V_{cc} = 5V \pm 10\%, All Temperature Ranges)^{(2)}$

	9		5	11
Sym.	Parameter	Min	Мах	Unit
t _{wc}	Write Cycle Time	35		ns
t _{cw}	Chip Enable Time to End of Write	15		ns
t _{AW}	Address Valid to End of Write	15		ns
t _{AS}	Address Set-up Time	0		ns
t _{wP}	Write Pulse Width	15		ns
t _{AH}	Address Hold Time from End of Write	2		ns
t _{DW}	Data Valid to End of Write	15		ns
t _{DH}	Data Hold Time	2		ns
t _{wz}	Write Enable to Output in High Z		15	ns
t _{ow}	Output Active from End of Write	0		ns

TIMING WAVEFORM OF WRITE CYCLE NO. 1 (WE CONTROLLED)⁽⁹⁾

TIMING	
ADDRESS	
CS	
WE	
DATA IN	
DATA OUT	HIGH IMPEDANCE

Notes:

- OS and WE must be LOW for WRITE cycle.
 If CS goes HIGH simultaneously with WE high, the output remains in a high impedance state.
- 11. Write Cycle Time is measured from the last valid address to the first transition address.

ORDERING INFORMATION

SELECTION GUIDE

The P4C189 is available in the following temperature range, speed, and package options.

Tomporaturo Pango	Packago	Speed (ns)	
	Fackage	35	
Commercial Temperature	Plastic DIP	-35PC	
Industrial Temperature	Plastic DIP	-35PI	

Pkg #	P	7
# Pins	16 (30)0 mil)
Symbol	Min	Max
А	0.145	0.200
A1	0.020	-
b	0.014	0.023
b2	0.040	0.060
С	0.008	0.016
D	0.740	0.780
E1	0.240	0.260
E	0.300	0.320
е	0.100	BSC
eB	0.310	0.365
L	0.125	0.150
α	0°	15 ∘

PLASTIC DUAL IN-LINE PACKAGE

REVISIONS

DOCUMENT NUMBER: DOCUMENT TITLE:		SRAM100 P4C189 HIGH SPEED 16 x 4 Static CMOS RAM with inverting outputs	
REV.	ISSUE DATE	ORIG. OF CHANGE	DESCRIPTION OF CHANGE
OR	Oct-05	JDB	New Data Sheet